Управляющие блоки

для систем вентиляции и кондиционирования.

(TER-9)

Инструкция по эксплуатации.

1.Применение управляющих блоков.

Блоки автоматики на базе программируемого термостата TER-9 применяются для комплексной защиты и управления систем вентиляции с электрическими нагревателями.

В блоке объединены силовая часть, для управления вентиляторами и нагревателями, а также схема автоматики и защиты.

2. Условия эксплуатации.

Управляющие блоки предназначены для установки внутри помещений, в непыльной, сухой среде без химических веществ.

Степень защиты корпуса щита IP 65 при закрытой крышке и IP 40 при открытой. Допустимая температура окружающей среды от +5 до +40 °C.

3. Конструкция.

Блоки имеют пластиковую, прозрачную крышку, под которой находятся все элементы управления. Силовая часть блока состоит из рубильников, автоматических выключателей, контакторов и клемм.

Регулирующие функции обеспечены применением программируемого термостата марки TER-6, который работает в режиме двухпозиционного регулятора.

Управление и защита осуществляется при помощи логического модуля.

Для предотвращения поражения электрическим током обслуживающего персонала в блоках используется трансформатор (24 V AC) с гальванической развязкой от питающей сети.

4. Регулирующие и защитные функции.

Управляющие блоки обеспечивают точное регулирование температуры обогрева, высокую стабильность, а также безопасность оборудования.

Управляющие блоки имеют стандартные и расширенные функции.

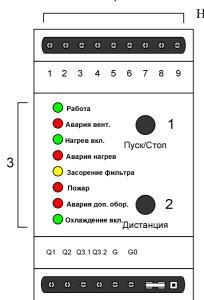
Стандартные функции.

- ручной пуск и остановка из управляющего блока
- внешний пуск и остановка при помощи безпотенциального контакта
- управление и защита вентиляторами с термоконтактами мощностью до 5 кВт
- управление сервоприводом воздушной заслонки (24 или 230 вольт)
- регулирование температуры приточного воздуха
- управление и защита электрических обогревателей (до 2 секций)
- задержка отключения приточного вентилятора
- подключение датчика засорения фильтра
- подключение канального датчика температуры воздуха
- подключение датчика перепада давления на вентиляторе

Расширенные функции.

- подключения вентиляторов без термоконтактов (защита по току с регулировкой)
- подключение дополнительных вентиляторов
- дистанционная сигнализация работы и неисправности
- недельный таймер (автоматическая работа установки по программе включения выключения)
- подключение вентиляторов мощностью от 5 до 11 кВт.
- подключение вентиляторов со встроенными термометрами-сопротивлениями

5. Управление


Основные функции управления вентиляционной системой, такие как пуск, останов и деблокировка неисправности осуществляются при помощи кнопок логического модуля, установленного внутри щита.

Изменение установленных значений температуры, а также изменение параметров конфигурации производится при помощи кнопок термостата. На дисплей термостата выводятся показания реальной температуры приточного воздуха и состояние выходных каналов. Дискретность показаний цифрового табло термостата составляет $0.5\,^{\circ}\mathrm{C}$.

Пуск и остановка.

Для запуска вентиляционной системы следует включить все автоматические выключатели в щите управления. Затем повернуть ручку основного выключателя в положение «I ON». При наличии сетевого напряжения на дисплее термостата, после загрузки, появятся показания температуры воздуха.

4

Нажав на кнопку «ПУСК/СТОП» (Рис.1Поз.1) можно произвести запуск вентиляционной системы в ручном режиме, при этом включится приточный вентилятор, откроется заслонка наружного воздуха, и термостат блока управления будет поддерживать установленную температуру в приточном воздуховоде. О работе вентилятора сигнализирует зеленый цвет светодиода «Работа» (Рис.1 Поз.3). Выключение вентиляционной системы производится повторным нажатием на кнопку «ПУСК/СТОП», при этом вентилятор выключится (после задержки, необходимой для охлаждения нагревателей), заслонка наружного воздуха закроется светодиод «Работа» погаснет.

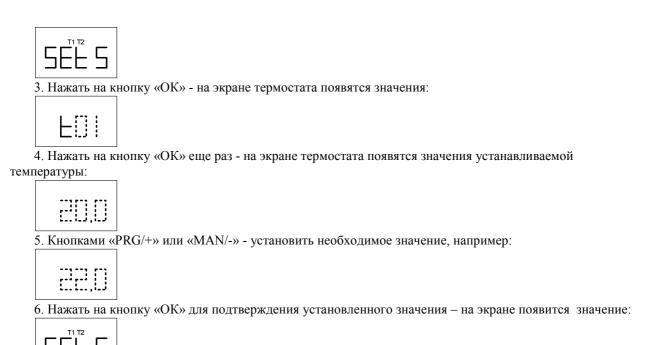
Нажав на кнопку « ДИСТАНЦИЯ» (Рис.1Поз.2) можно перевести управляющий блок в дистанционный режим работы (включение и выключение осуществляется при помощи вынесенного контакта или иного устройства).

Включение разрешения на обогрев воздуха происходит при помощи рубильника «Выкл. Нагрева». Светодиод «Нагрев вкл.» при этом загорается зеленым цветом.

6. Сигнализация неисправности.

При возникновении аварийных ситуаций блок управления автоматически выключит установку и просигнализирует о причине неисправности. Информацию об аварийных срабатываниях защит можно посмотреть по сигнальным светодиодам и на логическом модуле (Рис.1 Поз.3).

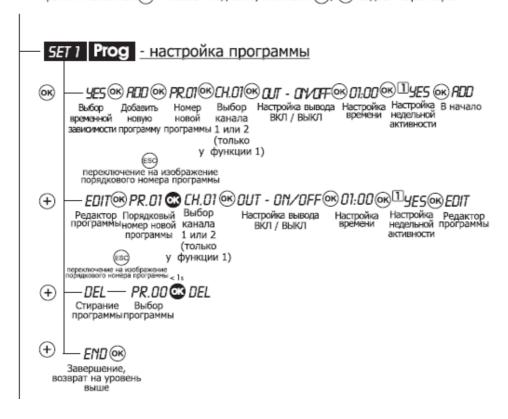
- перегрев двигателя вентилятора или отсутствие перепада давления красное свечение светодиода «Авария вент.»
- перегрев электрического обогревателя красное свечение светодиода «Авария нагрев»
- желтый светодиод «Засорение фильтра» сигнализирует о том, что необходимо произвести чистку или замену фильтрующей ткани. Отключения приточной системы по сигналу засорения фильтра не происходит
- отключение установки по сигналу от противопожарной системы красное свечение светодиода «Пожар» Для перезапуска вентиляционной установки после срабатывания защиты необходимо нажав на кнопку «ПУСК/СТОП» вернуть ее в исходное (отжатое) положение. Затем, повторным нажатием, можно произвести перезапуск системы, предварительно проверив причину неисправности и устранив ее.

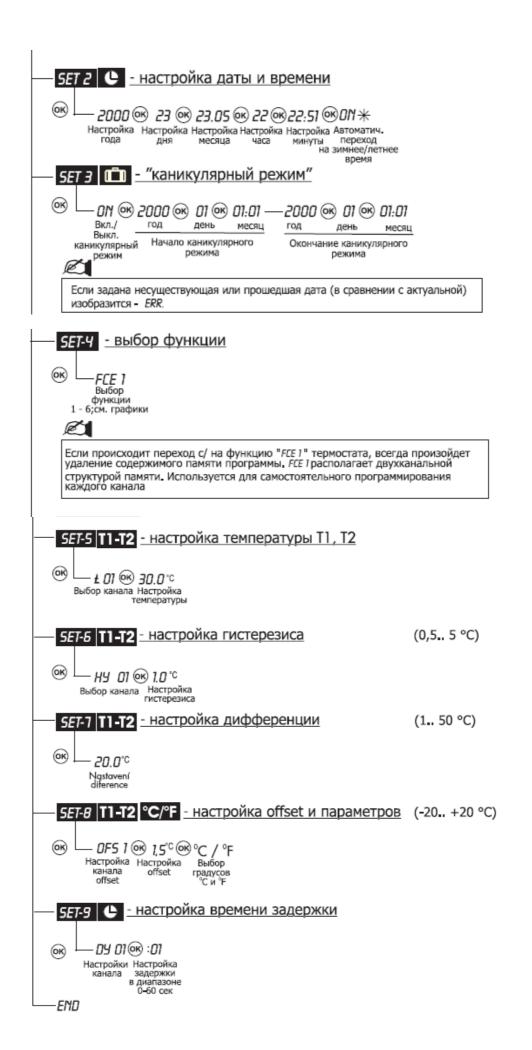

7. Установка температуры.

Заводское значение установленной температуры $20\,^{0}\,\mathrm{C}$. Для изменения значения установленной температуры необходимо:

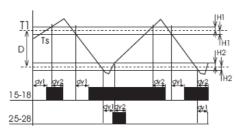
1. Нажать и удерживать кнопку «PRG/+» в течение нескольких секунд - на экране появится:

2. Кратковременно нажимать на кнопку «PRG/+» до появления на экране значения:




7. Нажать на кнопку «MAN2/ESC» для выхода из режима установки температуры.

9.Изменение параметров конфигурации.


Все параметры конфигурации заранее запрограммированы на оптимальные режимы работы, поэтому не нуждаются в изменениях. Если по каким либо причинам необходимо провести коррекцию программы, то для этого необходимо нажать на кнопку и удерживать кнопку «PRG/+» в течение нескольких секунд, для перехода в режим программирования. Затем, используя кнопки термостата, перемещаться по меню, делая необходимые изменения. Ниже приведена блок-схема программирования.

В режим программирования войдете длительным нажатием кнопки \bigcirc . Кратким нажатием \bigcirc - листаем подменю, кнопками \bigcirc задаем параметры.

Для блоков управления используется 4 тип подпрограммы термостата. На рисунке даны диаграмма работы и описание параметров.

Ts - реальная (температура замера) температура

Т1 - настроенная температура

D - настроенная дифференция

Н1 - настроенный гистерезис к Т1

Н2 - настроенный гистерезис к Т2

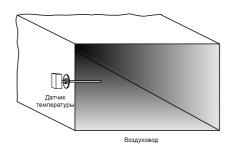
dy1 - настроенная дифференция соединения вывода

dy2 - настроенная дифференция разъединения вывода

15-18 выводной контакт

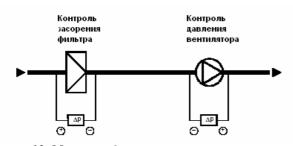
25-28 выводной контакт

10. Темепературные датчики.


К управляющим блокам, для измерения температуры приточного воздуха, подключаются датчики, имеющие характеристику чувствительного элемента NTC 12kOm. Канальный датчик является обязательным.

Для управляющих блоков рекомендуются следующий тип датчика:

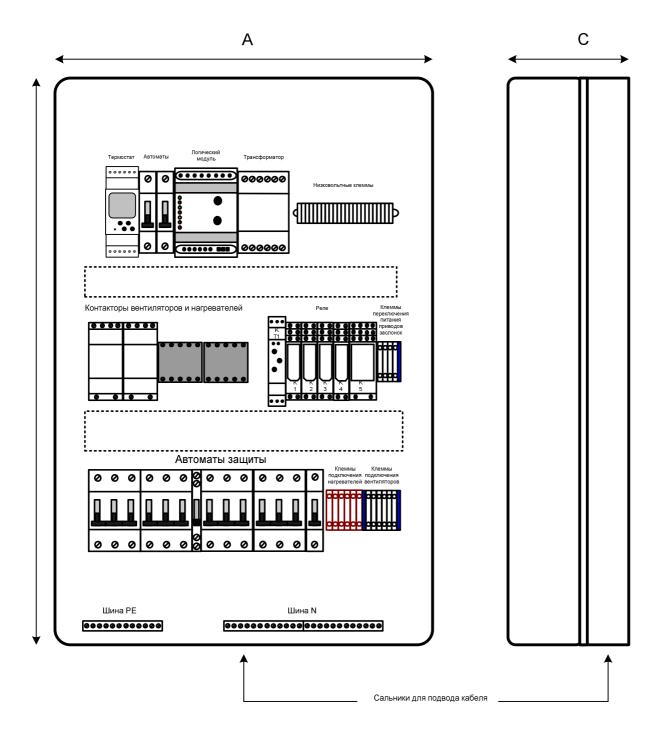
KTF1 NTC 12K


Датчик крепится в воздуховоде на прямом участке при помощи прилагаемого крепежного приспособления.

12. Дифференциальные датчики давления.

Датчики дифференциального давления подключаются к блокам управления для сигнализации засорения воздушного фильтра или контроля давления вентилятора.

13. Монтаж блоков управления.


При монтаже необходимо обеспечивать свободный доступ обслуживающего персонала к блоку управления для проведения монтажных работ и профилактического, сервисного обслуживания.

Электромонтаж имеет право проводить только персонал с соответствующими полномочиями.

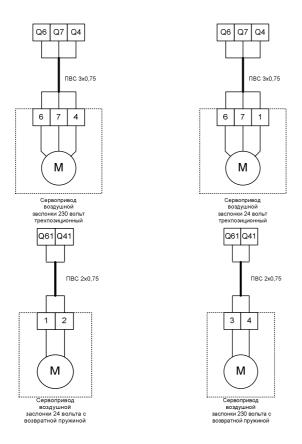
Блоки управления имеют следующие размеры (AxBxC): 380x570x140 (54 модуля). Для блоков работающих с электрическими нагревателями мощностью 45 или 60 кВт дополнительно изготавливается пластиковый силовой щит, который имеет размеры 600x300x214.

Подвод кабеля осуществляется через специальные резиновые сальники в верхней и нижней части блоков. Подключение силовых элементов, каких как вентиляторы и нагреватели, производится к клеммам в нижней части блока. Подключение датчиков, приводов воздушных заслонок производится к клеммам в верхней части. Подключение датчика температуры осуществляется непосредственно на клеммы термостата.

Внешний вид и расположение элементов внутри щита управления.

14. Подключение заслонки наружного воздуха.

К блокам управления предусмотрена возможность подключения приводов воздушных заслонок с питанием 24 и 230 вольт переменного тока. Изменение напряжения питания производится переключением коммутационного провода внутри блока (клеммы на средней DIN-рейке). Стандартно установлено напряжение 24 вольта. Если необходимо произвести изменение напряжения, надо проделать следующую процедуру:


- 1. Отключить коммутационный провод от клеммы 24.
- 2. Подключить данный провод к клемме 230.
- 3. Отключить коммутационный провод от клеммы QG.
- 4. Подключить провод на клемму QN.

К блокам управления можно подключить приводы с трехпозиционным алгоритмом работы (клеммы Q6,Q7,Q4), а также двухпозиционные приводы с возвратной пружиной (клеммы Q41,Q61).

<u>Внимание: При переходе на другой вид питания обязательно переключение двух провод, в случае несоблюдения данного требования блок управления может выйти из строя</u>

<u>Внимание: При подключении двух и более заслонок с сервоприводами напряжение питания всех исполнительных механизмов должно быть однотипным (24 или 230).</u>

Внимание: Подключение двухпозиционных приводов без возвратной пружины не предусмотрено.

15. Стандартно устанавливаемые параметры (заводские настройки термостата).

Подпрограмма	Описание	Индикация	Значение	Комментарии
SET1	Временная зависимость	YES/NO	NO	Не используется
	работы			
SET2	Установка времени	2000/24/12/01:01	Реальное время	Используется только для
				индикации
SET3	Режим «каникул»	ON/OFF	OFF	Не используется
SET4	Выбор режима работы	FCE1FCE6	FCE4	Функция двухступенчатого термостата
SET5	Установка температуры	T1	20	Установленное значение
	для датчика 1			канальной температуры
	Установка температуры	T2	20	Не используется
	для датчика 2			
SET6	Настройка гистерезиса	hy 01	0,5	Разница между точкой
	канала 1			включения/ыключения канала 1
	Настройка гистерезиса	hy 02	0,5	Разница между точкой
	канала 2			включения/выключения канала 2
SET7	Настройка		1	Разница температуры между
	дифференциала между			включением канала 1 и канала 2
	каналами			
SET8	Корректировка	OFS1	0	Изменяется в случае отличия
	измерений датчика 1			температуры реальной от
	TC	OFG2	0	измеренной
	Корректировка	OFS2	0	Не используется
	измерений датчика 2	C/E	С	II.
	Выбор единицы	C/F	C	Измерения температуры по
SET9	измерения	D01	0	шкале Цельсия
SE19	Настройка задержек	Dy01	0	Не используется
	срабатывания канала 1	D-02	0	П
	Настройка задержек	Dy02	U	Не используется
	срабатывания канала 1			